Contribution to the Stereochemistry of Copper. The Transition from a Tetragonal Pyramidal to a Trigonal Bipyramidal $\mathrm{Cu}(\mathrm{II}) \mathrm{O}_{5}$ Coordination Figure with a Structure Determination of $\mathrm{PbCu}_{2}\left(\mathrm{SeO}_{3}\right)_{3}$

H. EFFENBERGER
Institut für Mineralogie und Kristallographie der Universität Wien, Dr. Karl Lueger Ring 1, A-1010 Vienna, Austria

Received January 13, 1986; in revised form May 19, 1986

Abstract

In inorganic compounds the usual environment of oxygen-coordinated $\mathrm{Cu}(\mathrm{II})$ atoms are four nearest atoms at $\mathrm{Cu}-\mathrm{O} \sim 2.0 \AA$ in a more or less square planar arrangement. In some cases distinct deviations from the ideal " CuO_{4} square" are found. Obviously the largest distortions occur, if one additionaí O atom completes the coordination geometry in a "tetragonal pyramidal" $\mathrm{Cu}(\mathrm{II}){ }^{[4+1}{ }^{(1)} \mathrm{O}_{5}$ polyhedron. Now the continuous transition from this "tetragonal pyramidal" polyhedron to a trigonal bipyramidal $\mathrm{Cu}(\mathrm{II})^{[5]} \mathrm{O}_{5}$ polyhedron can be verified. In the compound $\mathrm{PbCu}_{2}\left(\mathrm{SeO}_{3}\right)_{3}$ each of the four crystallographically different Cu atoms has four nearest O atoms, which are "square planar" arranged. The " CuO_{4} squares" show different kinds of distortion. The crystal structure of $\mathrm{PbCu}_{2}\left(\mathrm{SeO}_{3}\right)_{3}$ was determined by single-crystal X-ray techniques ($a=7.813(1) \AA, b=9.116(1) \AA, c=12.570(1) \AA, \alpha=82.27(1)^{\circ}, \beta=$ $72.90(1)^{\circ}, \gamma=89.69(1)^{\circ}$, space group $P \overline{1}, Z=4, R_{w}=0.048$ for 5899 reflections up to $\sin \theta / \lambda=0.81$ \AA^{-1}). © 1988 Academic Press, Inc.

Introduction

$\mathrm{Cu}(\mathrm{II})$ atoms coordinated by oxygen atoms are in most cases surrounded by four nearest neighbors in a more or less distorted square planar arrangement $[\mathrm{Cu}(\mathrm{II})-$ $\mathrm{O} \sim 2.0 \AA$ § . Such a " CuO_{4} square" may be completed by one O atom to a tetragonal pyramid or by two O atoms to a distorted octahedron. Usually the $\mathrm{Cu}-\mathrm{O}$ bond lengths to the additional O atoms are longer than $2.25 \AA$; transitions between the distinct coordination numbers [4], [4 + 1], and $[4+2]$ are well known. In some cases the " CuO_{4} square" is definitely distorted. The $\mathrm{Cu}(\mathrm{II}) \mathrm{O}_{5}$ coordination figure may also be a trigonal bipyramid; the five $\mathrm{Cu}-\mathrm{O}$ bond lengths than vary from ~ 1.90 to $\sim 2.20 \AA$. It
is worth mentioning that other copper-oxygen coordination figures have been described only from a few isolated cases for inorganic crystal structures (see 1-7). Different kinds of distortion have been found in the compound $\mathrm{PbCu}_{2}\left(\mathrm{SeO}_{3}\right)_{3}$. In connection with studies on $\mathrm{Cu}(\mathrm{II})$-oxygen coordination figures a detailed discussion of its crystal structure seem to be of general interest.

Synthesis of $\mathbf{P b C u}_{2}\left(\mathbf{S e O}_{3}\right)_{3}$

Crystals of $\mathrm{PbCu}_{2}\left(\mathrm{SeO}_{3}\right)_{3}$ were synthesized under hydrothermal conditions in a steel vessel lined with 'Teflon." 2 g of an equimolar mixture of $\mathrm{PbO}, \mathrm{CuO}$, and SeO_{2} were put into the vessel of $\sim 6 \mathrm{ml}$ capacity;

TABLE I
Summary of Crystal Data, X-ray Data Collection, and Crystal Structure Refinement of $\mathrm{PbCu}_{2}\left(\mathrm{SeO}_{3}\right)_{3}$

$a=7.813(1) \AA$	STOE four-circle diffractometer AED 2
$b=9.116(1) \AA$	Program system STRUCSY (ECLIPSE S/140)
$c=12.570(1) \AA$	Crystal dimensions: $0.16 \times 0.18 \times 0.19 \mathrm{~mm}^{3}$
$\alpha=82.27(1)^{\circ}$	Graphite monochromatized Mo K α radiation
$\beta=72.90(1)^{\circ}$	Scan speed ratio $2 \theta: \omega=1: 1$
$\gamma=89.69(1)^{\circ}$	Time pro step: 0.5 to 1.5 sec; step width 0.03°
Space group $P \overline{1}$	40 steps per reflection; 6 steps for back ground
$\rho_{\text {calc }}=5.61 \mathrm{~g} \mathrm{~cm}^{-3}$	3 standard reflections measured each 90 min
$\mu\left({\mathrm{Mo} \mathrm{K} \mathrm{K} \alpha)=365 \mathrm{~cm}^{-1}}_{Z=4\left\{\mathrm{PbCu}_{2}\left(\mathrm{SeO}_{3}\right)_{3}\right\}}\right.$	Range of data collection: $2^{\circ} \leq 2 \theta \leq 70^{\circ}$
$R=0.055$	Total measured reflections: 9001
$R_{w}=0.048\left(w=\left[\sigma\left(F_{0}\right)\right]^{-2}\right)$	Unique reflections: 7058; 5899 with $F_{\mathrm{o}}>3 \sigma\left(\mathrm{~F}_{0}\right)$

$1 \mathrm{ml} \mathrm{H}_{2} \mathrm{O}_{2}$ ("perhydrol'") was added and the vessel was filled with $\mathrm{H}_{2} \mathrm{O}$ to about 80 vol\%. After heating for 2 days at $493(5) \mathrm{K}$ and after cooling to room temperature (12 hr) the following compounds were identified: $\mathrm{PbCu}_{2}\left(\mathrm{SeO}_{3}\right)_{3} ; \mathrm{Cu}\left(\mathrm{SeO}_{3}\right)-\mathrm{II}$, III, and IV (8); $\mathrm{Cu}_{2} \mathrm{O}\left(\mathrm{SeO}_{3}\right)-\mathrm{I}$ and II (9); $\mathrm{Cu}_{4} \mathrm{O}\left(\mathrm{SeO}_{3}\right)_{3}$-I and II (9). The title compound is triclinic and forms equidimensional crystals. They are light green in color and have a size up to 0.2 mm .

Structure Determination of $\mathbf{P b C u}_{\mathbf{2}}\left(\mathbf{S e O}_{\mathbf{3}}\right)_{\mathbf{3}}$

Lattice parameters were obtained from the accurate 2θ values of 74 reflections. They are listed together with the data concerning the X-ray measurements as well as with the final obtained R values in Table I. The collected intensities were corrected for absorption (empirical ψ scans), and for Lorentz and polarization effects as usual.

The coordinates for the Pb atoms were found by direct methods. Subsequent Fourier summations revealed the positions of the other atoms. Complex atomic scattering functions for neutral atoms (10) were employed. Secondary isotropic extinction (11) was taken into consideration during
the final stage of refinement. Table II gives a list of final obtained structure parameters, Table III some important interatomic distances and bond angles.

Discussion of the Crystal Structure of $\mathbf{P b C u}_{2}\left(\mathbf{S e O}_{3}\right)_{3}$

The coordination geometries of the two Pb atoms in $\mathrm{PbCu}_{2}\left(\mathrm{SeO}_{3}\right)_{3}$ are quite different (see Table III), but are in agreement with common crystal chemical experience (12). The $\mathrm{Pb}(1)$ atom has an one-sided coordination by five oxygen atoms with $\mathrm{Pb}-\mathrm{O}=$ 2.45 to $2.61 \AA$. The distance to the nextnearest neighbor measures $2.92 \AA$. The $\mathrm{Pb}(2)-\mathrm{O}$ distances are generally longer than the $\mathrm{Pb}(1)-\mathrm{O}$ distances; the coordination geometry of the $\mathrm{Pb}(2)$ atom is not as clear-cut as that of the $\mathrm{Pb}(1)$ atom: There are seven $\mathrm{Pb}(2)-\mathrm{O}$ distances within the range from 2.61 to $2.79 \AA$; the eighth $\mathrm{Pb}-\mathrm{O}$ distance is $2.93 \AA$. The coordination geometry of the $\mathrm{Pb}(2)$ atom is irregular, but not one-sided.

Each of the Cu atoms has four nearest O atom neighbors within the range from 1.92 to $2.03 \AA$ (mean values from 1.96 to $1.99 \AA$). Considcring only these atoms, the coordination may be described as more or less

TABLE II
Structural Parameters for $\mathrm{PbCu}_{2}\left(\mathrm{SeO}_{3}\right)_{3}{ }^{a}$

Atom	x / a	y / b	$2 / c$	U_{11}	U_{22}	U_{33}	U_{12}	U_{13}	U_{23}
$\mathrm{Pb}(1)$	$0.12192(5)$	$0.65409(5)$	0.34829(4)	129(2)	120(2)	175(2)	20(1)	-53(2)	-56(1)
$\mathrm{Pb}(2)$	0.05879(6)	0.14271 (5)	$0.34295(5)$	163(2)	179(2)	205(2)	38(1)	-46(2)	-32(2)
$\mathrm{Cu}(1)$	0.4412(2)	0.4338(1)	0.7054(1)	98(5)	115(5)	136(6)	27(4)	-26(5)	-61(5)
$\mathrm{Cu}(2)$	0.2260(2)	0.8323(2)	0.9633(1)	101(5)	158(6)	143(6)	55(4)	-48(5)	-60(5)
$\mathrm{Cu}(3)$	$0.1676(2)$	0.2424(2)	0.0098(1)	109(5)	135(6)	178(7)	56(4)	-63(5)	-101(5)
$\mathrm{Cu}(4)$	0.3769(2)	$0.8321(1)$	0.7002(1)	123(5)	123(5)	121(6)	10(4)	-47(5)	-16(5)
$\mathrm{Se}(1)$	0.0839(1)	0.5471(1)	$0.8311(1)$	92(4)	70(4)	166(5)	27(3)	-39(4)	-60(4)
Se (2)	$0.4324(1)$	0.8810(1)	0.1309(1)	88(4)	89(4)	121(5)	40(3)	-27(4)	-37(4)
$\mathrm{Se}(3)$	0.3226 (1)	0.3713(1)	0.4946(1)	104(4)	78(4)	147(5)	21(3)	-37(4)	-44(4)
$\mathrm{Se}(4)$	0.3594(1)	$0.9052(1)$	0.4485(1)	93(4)	89(4)	145(5)	19(3)	-47(4)	-42(4)
$\mathrm{Se}(5)$	$0.1238(1)$	0.1075 (1)	0.8020(1)	109(4)	85(4)	129(5)	32(3)	-36(4)	-45(4)
Se (6)	0.4456(1)	$0.3716(1)$	0.1285(1)	100(4)	97(4)	124(5)	39(3)	-38(4)	-52(4)
$\mathrm{O}(11)$	$0.1853(10)$	0.6765(8)	$0.7172(8)$	13(3)	11(3)	22(4)	-1(3)	-9(3)	-3(3)
$\mathrm{O}(12)$	0.0474(10)	0.6432(8)	0.9406(8)	11(3)	12(3)	26(5)	5(3)	-6(3)	$-9(3)$
$\mathrm{O}(13)$	$0.2618(9)$	0.4472(8)	0.8489(8)	8 (3)	$11(3)$	25(5)	$9(2)$	-5(3)	-8(3)
$\mathrm{O}(21)$	$0.4373(11)$	0.7750(9)	0.2529(8)	21(4)	12(3)	17(4)	4(3)	-10(4)	$9(3)$
O(22)	0.3463 (11)	0.7530(9)	$0.0715(7)$	20(4)	13(3)	15(4)	4(3)	$-10(3)$	-6(3)
$\mathrm{O}(23)$	0.6552(9)	0.8989(9)	0.0494(8)	5 (3)	17(4)	25(5)	3(2)	-3(3)	-8(4)
$\mathrm{O}(31)$	0.2562(10)	0.3780(9)	0.6362(8)	10(3)	18(4)	16(4)	-2(3)	1(3)	-3(3)
$\mathrm{O}(32)$	$0.1187(11)$	0.3467(10)	0.4755(9)	12(3)	26(4)	26(5)	-1(3)	-8(4)	-8(4)
$\mathrm{O}(33)$	$0.3685(10)$	$0.5571(8)$	$0.4396(8)$	12(3)	8(3)	19(4)	5(2)	-4(3)	-3(3)
$\mathrm{O}(41)$	0.1470(10)	0.8594(9)	0.4514(9)	10(3)	16(4)	27(5)	1(3)	-6(3)	-8(4)
$\mathrm{O}(42)$	$0.3799(10)$	1.0750(8)	$0.3706(8)$	8(3)	10(3)	21(4)	2(2)	-6(3)	-1(3)
$\mathrm{O}(43)$	0.2970(11)	0.9519(9)	0.5837(7)	20(4)	14(4)	8(3)	7(3)	-3(3)	-6(3)
$\mathrm{O}(51)$	$0.1348(12)$	-0.0775(8)	$0.8365(7)$	31(4)	8 (3)	13(4)	8(3)	-9(4)	-3(3)
$\mathrm{O}(52)$	-0.0428(11)	$0.1022(9)$	$0.7414(8)$	20(4)	14(4)	26(5)	10(3)	-17(4)	-8(4)
O(53)	$0.0158(10)$	$0.1615(9)$	0.9289(7)	7(3)	24(4)	12(4)	4(3)	3(3)	-13(3)
$\mathrm{O}(61)$	$0.3870(10)$	$0.4335(9)$	$0.2544(7)$	14(3)	19(4)	10(3)	4(3)	-4(3)	-10(3)
O(62)	0.5694(10)	$0.2224(8)$	0.1603(7)	14(3)	16(4)	8(3)	$6(3)$	-4(3)	3(3)
O(63)	$0.2476(10)$	$0.2834(9)$	0.1389(8)	6 (3)	20(4)	18(4)	-1(3)	-3(3)	-4(3)

${ }^{a} \mathrm{ATF}=\exp \left[-2 \pi^{2} \sum_{i=1}^{3} \sum_{j=1}^{3} U_{i j} h_{i} h_{j} a_{i}^{*} a_{j}^{*}\right]$. $U_{i j}$ are multiplied by 10^{-4} for the atoms Pb, Cu, and Se , as well as by 10^{-3} for the O atoms.
distorted "square planar." Up to $2.60 \AA$ the atoms $\mathrm{Cu}(1), \mathrm{Cu}(3)$, and $\mathrm{Cu}(4)$ have one further O atom neighbour. For one of the $[4+$ 1] coordinated Cu atoms in $\mathrm{PbCu}_{2}\left(\mathrm{SeO}_{3}\right)_{3}$ the distance to this fifth neighboring O atom is very short $[\mathrm{Cu}(1)-O=2.19 \AA]$. Similar values have been reported only in a few inorganic compounds (1,2,5,7). The $\mathrm{Cu}(2)$ atom is $[4+1+1]$ coordinated: beside the " CuO_{4} square" it is coordinated to two further O atoms with $\mathrm{Cu}(2)-\mathrm{O}$ dis-
tances of 2.32 and $2.59 \AA$. The next nearest $\mathrm{Cu}-\mathrm{O}$ distances are longer than $2.80 \AA$ and they are excluded from discussion.

In the ' CuO_{4} squares' the $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angles between neighboring O atoms are within the range from 80.0 to 99.6°, and the angles between opposite O atoms are all larger than 150°. In the " $\mathrm{Cu}(1) \mathrm{O}_{4}$ square" one of the $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angles between opposite O atoms is only 158.0°, whereas the other one is 173.7°. This coordination may

TABLE III
Interatomic Distances (\AA) and Bond Angles $\left({ }^{\circ}\right)$ IN $\mathrm{PbCu}_{3}\left(\mathrm{SeO}_{3}\right)_{3}{ }^{a}$

$\mathrm{Pb}(1)-\mathrm{O}(32)=2.447(10)$	$\mathrm{Pb}(2)-\mathrm{O}(41)=2.610(10)$		
$\mathrm{Pb}(1)-\mathrm{O}(41)=2.455(9)$	$\mathrm{Pb}(2)-\mathrm{O}(52)=2.615(8)$		
$\mathrm{Pb}(1)-\mathrm{O}(52)=2.512(8)$	$\mathrm{Pb}(2)-\mathrm{O}(42)=2.690(7)$		
$\mathrm{Pb}(1)-\mathrm{O}(21)=2.581(8)$	$\mathrm{Pb}(2)-\mathrm{O}(63)=2.704(9)$		
$\mathrm{Pb}(1)-\mathrm{O}(33)=2.612(8)$	$\mathrm{Pb}(2)-\mathrm{O}(11)=2.721(7)$		
$\mathrm{Pb}(1)-\mathrm{O}(31)=2.917(7)$	$\mathrm{Pb}(2)-\mathrm{O}(43)=2.762(8)$		
$\mathrm{Pb}(1)-\mathrm{O}(61)=2.980(8)$	$\mathrm{Pb}(2)-\mathrm{O}(32)=2.785(8)$		
$\mathrm{Pb}(1)-\mathrm{O}(32)=3.030(9)$	$\mathrm{Pb}(2)-\mathrm{O}(41)=2.931(8)$		
$\mathrm{Pb}(1)-\mathrm{O}(22)=3.403(8)$	$\mathrm{Pb}(2)-\mathrm{O}(51)=3.174(8)$		
$\mathrm{Se}(1)-\mathrm{O}(12)=1.683(9)$			
$\mathrm{Se}(1) \mathrm{O}(13)=1.710(7)$			
$\mathrm{Se}(1)-\mathrm{O}(11)=1.720(9)$	$\mathrm{Se}(4)-\mathrm{O}(43)=1.736(8)$		
$\mathrm{Se}(2)-\mathrm{O}(22)=1.706(8)$			
$\mathrm{Se}(2)-\mathrm{O}(21)=1.710(9)$	$\operatorname{Se}(5)-O(52)=1.694(8)$		
$\mathrm{Se}(2)-\mathrm{O}(23)=1.737(8)$	$\mathrm{Se}(5)-\mathrm{O}(53)=1.707(8)$		
$\mathrm{Se}(3)-\mathrm{O}(32)=1.700(8)$			
$\mathrm{Se}(3)-\mathrm{O}(31)=1.711(10)$	$\mathrm{Se}(6)-\mathrm{O}(63)=1.710(7)$		
$\mathrm{Se}(3)-\mathrm{O}(33)=1.738(7)$	$\mathrm{Se}(6)-\mathrm{O}(62)=1.736(7)$		
$\mathrm{Cu}(1)-\mathrm{O}(13)=1.950(9)$	$\mathrm{O}(13) \mathrm{O}(33)$	3.92(1)	173.7(4)
$\mathrm{Cu}(1)-\mathrm{O}(33)=1.976(9)$	$\mathrm{O}(13) \mathrm{O}(31)$	2.84(1)	92.2(4)
$\mathrm{Cu}(1)-\mathrm{O}(31)=1.993(8)$	$\mathrm{O}(13) \mathrm{O}(61)$	2.82(1)	$90.4(3)$
$\mathrm{Cu}(1)-\mathrm{O}(61)=2.025(8)$	$\mathrm{O}(13) \mathrm{O}(21)$	3.19(1)	100.4(3)
$\mathrm{Cu}(1)-\mathrm{O}(21)=2.192(8)$	$\mathrm{O}(33) \mathrm{O}(31)$	2.84 (1)	91.5(4)
$\mathrm{Cu}(1)-\mathrm{O}(11)=2.963(7)$	$\mathrm{O}(33) \mathrm{O}(61)$	2.69(1)	84.3(3)
	$\mathrm{O}(33) \mathrm{O}(21)$	2.79(1)	83.7(3)
	$\mathrm{O}(31) \mathrm{O}(61)$	3.94(1)	158.0(4)
	$\mathrm{O}(31) \mathrm{O}(21)$	3.32(1)	104.9(3)
	$\mathrm{O}(61) \mathrm{O}(21)$	3.14(1)	96.0 (3)
$\mathrm{Cu}(2)-\mathrm{O}(22)=1.933(8)$	$\mathrm{O}(22) \mathrm{O}(53)$	2.93(1)	97.0(4)
$\mathrm{Cu}(2)-\mathrm{O}(53)=1.980(8)$	$\mathrm{O}(22) \mathrm{O}(62)$	2.77(1)	89.8(4)
$\mathrm{Cu}(2)-\mathrm{O}(62)=1.989(8)$	$\mathrm{O}(22) \mathrm{O}(51)$	3.93(1)	$172.1(4)$
$\mathrm{Cu}(2)-\mathrm{O}(51)=2.008(8)$	$\mathrm{O}(53) \mathrm{O}(62)$	3.92(1)	162.2(4)
$\mathrm{Cu}(2)-\mathrm{O}(12)=2.322(7)$	$\mathrm{O}(53) \mathrm{O}(51)$	2.83(1)	90.5(4)
$\mathrm{Cu}(2)-\mathrm{O}(23)=2.593(8)$	O(62) O(51)	2.66(1)	83.6(4)
$\mathrm{Cu}(3)-\mathrm{O}(23)=1.940(8)$	$\mathrm{O}(23) \mathrm{O}(12)$	3.87(1)	167.1(4)
$\mathrm{Cu}(3)-\mathrm{O}(12)=1.959(8)$	$\mathrm{O}(23) \mathrm{O}(53)$	2.71(1)	87.6 (3)
$\mathrm{Cu}(3)-\mathrm{O}(53)=1.976(8)$	$\mathrm{O}(23) \mathrm{O}(63)$	2.99(1)	99.3(4)
$\mathrm{Cu}(3)-\mathrm{O}(63)=1.981(9)$	$\mathrm{O}(12) \mathrm{O}(53)$	2.53(1)	80.0 (4)
$\mathrm{Cu}(3)-\mathrm{O}(13)=2.498(9)$	$\mathrm{O}(12) \mathrm{O}(63)$	2.81(1)	91.1(4)
$\mathrm{Cu}(3)-\mathrm{O}(51)=2.854(8)$	$\mathrm{O}(53) \mathrm{O}(63)$	3.89(1)	158.3(4)
$\mathrm{Cu}(4)-\mathrm{O}(\mathrm{62})=1.922(8)$	$\mathrm{O}(62) \mathrm{O}(43)$	3.82 (1)	159.2(4)
$\mathrm{Cu}(4)-\mathrm{O}(43)=1.956(8)$	$\mathrm{O}(62) \mathrm{O}(42)$	2.78 (1)	90.9(4)
$\mathrm{Cu}(4)-\mathrm{O}(42)=1.985(8)$	$\mathrm{O}(62) \mathrm{O}(11)$	3.01(1)	99.6(4)
$\mathrm{Cu}(4)-\mathrm{O}(11)=2.013(7)$	$\mathrm{O}(43) \mathrm{O}(42)$	2.75(1)	88.6(4)
$\mathrm{Cu}(4)-\mathrm{O}(51)=2.377(8)$	$\mathrm{O}(43) \mathrm{O}(11)$	2.81(1)	90.2(4)
$\mathrm{Cu}(4)-\mathrm{O}(61)=3.129(8)$	$\mathrm{O}(42) \mathrm{O}(11)$	3.89(1)	152.8(4)

${ }^{a} \mathrm{~Pb}-\mathrm{O}$ distances are given up to $3.50 \AA, \mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angles for $\mathrm{Cu}-\mathrm{O}<2.20 \AA$.
be considered as an example for the transition from a tetragonal pyramidal $[4+1]$ coordination toward a trigonal bipyramidal [5] coordination. The " $\mathrm{Cu}(2) \mathrm{O}_{4}$ square" has the smallest distortion as compared with the other " CuO_{4} squares" in
$\mathrm{PbCu}_{2}\left(\mathrm{SeO}_{3}\right)_{3}$. For the atoms $\mathrm{Cu}(3)$ and $\mathrm{Cu}(4)$ both the $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angles between opposite O atoms in the " CuO_{4} square" are smaller than 167°. The " $\mathrm{Cu}(3) \mathrm{O}_{4}$ square" is distorted toward a tetragonal pyramid (with the $\mathrm{Cu}(3)$ atom at the apex pointing to the fifth nearest oxygen atom). The " $\mathrm{Cu}(4) \mathrm{O}_{4}$ square" deviates definitely from the "tetragonal planar" symmetry.

The $\mathrm{Se}-\mathrm{O}$ bond lengths vary from 1.68 to $1.74 \AA$ and the mean values for the six selenite groups from 1.70 to $1.72 \AA$. The $\mathrm{O}-\mathrm{Se}-\mathrm{O}$ angles are 94.6 to 104.8° and the O-O edges are 2.53 to $2.72 \AA$ (13).

Considering only the " CuO_{4} squares," the " $\mathrm{Cu}(2) \mathrm{O}_{4}$," " $\mathrm{Cu}(3) \mathrm{O}_{4}$," and " $\mathrm{Cu}(4) \mathrm{O}_{4}$ squares" are connected by common O atom corners [atoms $O(53)$ and $O(62)$] to formal $\mathrm{Cu}_{3} \mathrm{O}_{10}$ groups. The longer $\mathrm{Cu}-\mathrm{O}$ bonds $[\mathrm{Cu}(2)-\mathrm{O}(12)$ and $\mathrm{Cu}(4)-\mathrm{O}(51)]$ are within these groups resulting in common $\mathrm{O}-\mathrm{O}$ edges of the Cu polyhedra $[\mathrm{O}(51)-$ $\mathrm{O}(62)=2.66 \AA$ and $\mathrm{O}(12)-\mathrm{O}(53)=2.53 \AA]$. Each of these groups is connected to an " $\mathrm{Cu}(1) \mathrm{O}_{4}$ square" by a long $\mathrm{Cu}(3)-\mathrm{O}(13)$ bond and to a second $\mathrm{Cu}_{3} \mathrm{O}_{10}$ group by a long $\mathrm{Cu}(2)-\mathrm{O}(23)$ bond resulting in a connection of total eight copper coordination polyhedra. A three-dimensional atomic arrangement is built up by the SeO_{3} groups and by the coordination polyhedra of the Pb atoms (Fig. 1).

The "Tetragonal Pyramidal" $\mathbf{C u}($ II $) \mathrm{O}_{5}$ Polyhedron

The ideal tetragonal pyramidal $\mathrm{Cu}(\mathrm{II}) \mathrm{O}_{5}$ polyhedron can be described as follows: the $\mathrm{Cu}(\mathrm{II})$ atom is in the middle of a basal plane defined by the atoms $\mathrm{O}^{\mathrm{a}}, \mathrm{O}^{\mathrm{b}}, \mathrm{O}^{\mathrm{c}}$, and O^{d} (Fig. 2a). Under the recent topic slight deviations of the " CuO_{4} square" from the symmetry $4 / \mathrm{mmm}$ are neglected. Strong distortions have been found especially for those $\mathrm{Cu}(\mathrm{II})$ atoms, whose fifth $\mathrm{Cu}-\mathrm{O}$ bond length is shorter than $2.30 \AA$. The degree of

Fig. 1. Projection of the crystal structure of $\mathrm{PbCu}_{2}\left(\mathrm{SeO}_{3}\right)_{3}$ parallel [010] onto (010).
distortion can be expressed by the angles between opposite O atoms within the " CuO_{4} square": $\alpha_{1}=\mathrm{O}^{\mathrm{a}}-\mathrm{Cu}-\mathrm{O}^{\mathrm{c}}$ and $\alpha_{2}=$
$\mathrm{O}^{\mathrm{b}}-\mathrm{Cu}-\mathrm{O}^{\mathrm{d}}$. Two principal different kinds of distortion are known:
(a) α_{1} and α_{2} are definitely smaller than
a
b
C
$\alpha_{1}=0^{a}-\mathrm{Cu}-\mathrm{O}^{\mathrm{c}} \ll 180^{\circ}$

$$
\alpha_{2}=0^{b}-C u-0^{d} \sim 180^{\circ}
$$

Fig. 2. $\mathrm{Cu}(\mathrm{II})^{[4+7]} \mathrm{O}$, and $\mathrm{Cu}(\mathrm{II})^{[5]} \mathrm{O}$, coordination polyhedra: (a) the tetragonal pyramidal coordination with the $\mathrm{Cu}(\mathrm{II})$ atom in the basal plane; (b) the tetragonal pyramidal coordination figure with the $\mathrm{Cu}(\mathrm{II})$ atom shifted toward the fifth nearest neighbor; (c) the transition from a tetragonal pyramidal coordination to a trigonal bipyramidal one.

TABLE IV
$\mathrm{Cu}(\mathrm{II}))^{[4+1]} \mathrm{O}_{5}$ Coordination Polyhedra in Inorganic Crystal Structures with a Strongly Distorted " CuO_{4} SQuare" a

Compound	Atom	$\mathrm{Cu}-\mathrm{O}$ distances within the "CuO squares"								$\mathrm{Cu}-\mathrm{O}^{\mathrm{e}}$ distance	α_{1}	α_{2}
$\mathrm{Cu}_{4} \mathrm{O}\left(\mathrm{PO}_{4}\right)_{2}(15)$, see	$\mathrm{Cu}(3)$	1.895	1.942	2.029	2.053	2.226	132.8	170.9				
also (16)	$\mathrm{Cu}(4)$	1.907	1.949	1.957	2.093	2.302	129.0	176.4				
$\mathrm{Cu}_{5} \mathrm{O}_{(}\left(\mathrm{PO}_{4}\right)_{2}(17)$	$\mathrm{Cu}(3)$	1.931	1.932	1.943	2.167	2.254	136.0	177.2				
$\mathrm{Ca}_{3} \mathrm{Cu}_{3}\left(\mathrm{PO}_{4}\right)_{4}(18)$	$\mathrm{Cu}(2)$	1.906	1.941	2.038	2.090	2.169	132.6	171.0				
$\mathrm{Cu}_{4} \mathrm{O}\left(\mathrm{SeO}_{3}\right)_{2}-\mathrm{I}(9)$	$\mathrm{Cu}(5)$	1.932	1.962	1.963	1.981	2.265	150.0	175.3				
	$\mathrm{Cu}(9)$	1.897	1.942	1.964	2.035	2.312	149.2	171.2				
	$\mathrm{Cu}(11)$	1.906	1.980	1.981	2.053	2.205	142.4	169.2				
	$\mathrm{Cu}(12)$	1.910	1.939	1.983	2.017	2.348	143.7	165.1				
	$\mathrm{Cu}(13)$	1.919	1.950	1.974	2.132	2.170	140.5	171.1				
	$\mathrm{Cu}(14)$	1.889	1.957	1.987	2.031	2.252	141.9	170.4				
	$\mathrm{Cu}(15)$	1.918	1.960	1.972	2.029	2.242	148.8	170.0				
$\mathrm{Cu}_{4} \mathrm{O}\left(\mathrm{SeO}_{3}\right)_{3}-\mathrm{II}(9)$	$\mathrm{Cu}(16)$	1.895	1.962	1.994	2.048	2.240	136.1	168.7				
	$\mathrm{Cu}(4)$	1.917	1.947	2.004	2.032	2.229	144.7	168.2				
		1.920	1.962	1.964	1.999	2.343	145.6	167.5				

${ }^{a}$ Interatomic distances in \AA, bond angles in ${ }^{\circ}$.
180° (see Fig. 2b). It might be that the $\mathrm{Cu}(\mathrm{II})$ atom formally is shifted out of the " CuO_{4} square" toward the fifth neighbor. Examples are the $\mathrm{Cu}(3)$ atom in $\mathrm{PbCu}_{2}\left(\mathrm{SeO}_{3}\right)_{3}$ or the $\mathrm{Cu}(1)$ atom in the monoclinic modification of KCuPO_{4} (14) (in monoclinic $\mathrm{KCuPO}_{4} \alpha_{1}$ and α_{2} are 165.9° and 147.5°, $\mathrm{Cu}-\mathrm{O}^{\mathrm{e}}=2.154 \AA$).
(b) The distortion may concern predominantly one of the two $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angles α (see Fig. 2c), Table IV lists some examples with the angle α_{1} smaller than 150° and the angle α_{2} larger than 165°. Their stereographic projections are given in Fig. 3: The angle α_{1} is drawn counterclockwise from the southern point at the ground circle; the atoms O^{b} and O^{d} lie near the middle point (one at the upper and one at the bottom side). Comparing Fig. 3 and Table IV it can be seen, that distorted tetragonal pyramidal $\mathrm{Cu}(\mathrm{II}) \mathrm{O}_{5}$ coordination polyhedra are known, for which
(1) the $\mathrm{Cu}-\mathrm{O}^{\mathrm{e}}$ bond length is "short" as compared with $\mathrm{Cu}(\mathrm{II})^{[4+1]} \mathrm{O}_{5}$ coordination polyhedra containing undistorted
or even less distorted " CuO_{4} squares,"
(2) one of the two $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angles between opposite O atoms within the " CuO_{4} square" is definitely smaller than 180° $\left(\alpha_{1}\right)$,
(3) the angle α_{2} deviates only slightly from 180°, and
(4) the direction of the longest $\mathrm{Cu}-\mathrm{O}$ bond within the coordination polyhedron (i.e., $\mathrm{Cu}-\mathrm{O}^{\mathrm{e}}$) lies off the angle α_{1}.

The "Trigonal Bipyramidal" $\mathbf{C u}(I I) \mathrm{O}_{5}$ Polyhedron

The trigonal bipyramidal coordination polyhedron with its ideal symmetry $\overline{\mathbf{6}} 2 \mathrm{~m}$ is shown in Fig. 4. The highest known point symmetry for a $\mathrm{Cu}(\mathrm{II})$ atom is 3 [atom $\mathrm{Cu}(1)$ in $\mathrm{Cu}_{2} \mathrm{O}\left(\mathrm{SeO}_{3}\right)-\mathrm{I}$ (9)]. Usually the $\mathrm{Cu}-\mathrm{O}$ bond lengths to the equatorial atoms O^{a}, O^{b}, and O^{c} are somewhat longer than to the axial atoms O^{d} and O^{e}; a distortion predominantly concerns the arrangement of the equatorial O atoms. Table V lists the $\mathrm{Cu}(\mathrm{II}) \mathrm{O}_{5}$ polyhedra in inorganic crystal

Fig. 3. $\mathrm{Cu}(\mathrm{II})^{[4+1]} \mathrm{O}_{5}$ coordination polyhedra with strongly distorted " CuO_{4} squares." O , At the upper side, \times, at the bottom side of the stereographic projection. The polyhedra mentioned in Table IV are shown.
structures described as trigonal bipyramids.
The stereographic projections of these coordination polyhedra are given in Fig. 5. The largest angle within the equatorial plane $\beta_{1}=\mathrm{O}^{\mathrm{a}}-\mathrm{Cu}-\mathrm{O}^{\mathrm{b}}$ is drawn counterclockwise from the southern point at the ground circle. The third atom within the equatorial plane is signed as O^{c} and lies off the angle β_{1}. Both the axial atoms O^{d} and O^{e} lie near the center of the projection (one at the upper side and one at the bottom side). The angle $\beta_{2}=\mathrm{O}^{\mathrm{d}}-\mathrm{Cu}-\mathrm{O}^{\mathrm{e}}$ deviates up to $\sim 10^{\circ}$ from the ideal value of 180°. From Fig. 5 and Table V follows:
(1) for some of the coordination figures one of the three $\mathrm{O}-\mathrm{Cu}-\mathrm{O}$ angles ($=\beta_{1}$) within the equatorial plane is definitely larger than 120° and the two others are smaller than 120°,
(2) in most cases one of the five $\mathrm{Cu}-\mathrm{O}$ distances is large as compared with the others, and
(3) with a few exceptions $\mathrm{Cu}-\mathrm{O}^{\mathrm{c}}$ is the longest one of the five $\mathrm{Cu}-\mathrm{O}$ bond lengths.

Conclusion

Comparing the CuO_{5} coordination figures mentioned above (see Figs. 3 and 5 and

Fig. 4. The $\mathrm{Cu}(\mathrm{II}) \mathrm{O}_{5}$ polyhedron forming a trigonal bipyramid.

TABLE V
Coordination Figures of $\mathbf{C u}(I I)$ Atoms in Inorganic Crystal Structures Cited in Literature as Trigonal "bipyramidal" [5] Coordinated ${ }^{a}$

Compound and mineral name	Atom	$\mathrm{Cu}-\mathrm{O}^{\text {d.e }}$	$\mathrm{Cu}-\mathrm{O}^{\text {a,b }}$	$\mathrm{Cu}-\mathrm{O}^{\text {c }}$	$\beta_{2}=\mathrm{O}^{\text {d }}$ - $\mathrm{Cu}-\mathrm{O}^{\text {c }}$	$\mathrm{O}^{\mathrm{a}, \mathrm{b}}-\mathrm{Cu}-\mathrm{O}^{\mathrm{c}}$	$\beta_{1}=\mathrm{O}^{\text {a }}-\mathrm{Cu}-\mathrm{O}^{\text {b }}$
$\mathrm{Cu}_{2}(\mathrm{OH})\left(\mathrm{PO}_{4}\right)$, libethenite (19)	$\mathrm{Cu}(2)$	1.934	2.046	2.057	172.5	111.6	124.2
		1.938	2.057			124.2	
$\mathrm{KCu}_{4}\left(\mathrm{PO}_{4}\right)_{3}(20)$	$\mathrm{Cu}(3)$	1.882	2.048	2.028	169.2	101.5	137.8
		1.957	2.179			119.4	
	$\mathrm{Cu}(4)$	1.921	1.971	2.113	167.5	111.6	125.5
		1.924	2.199			122.3	
$\mathrm{Cu}_{2} \mathrm{O}\left(\mathrm{SO}_{4}\right)$, dolerophanite (2I)	$\mathrm{Cu}(2)$	1.906	2.155	2.000	179.5	112.1	130.2
		1.907	2.155			112.1	
$\mathrm{Cu}_{5} \mathrm{~V}_{2} \mathrm{O}_{10}$ (3)	$\mathrm{Cu}(3)$	1.932	1.924	2.287	177.0	94.7	138.2
		1.969	2.034			127.2	
	$\mathrm{Cu}(5)$	1.890	1.965	2.230	170.2	100.3	139.9
		1.930	2.034			117.2	
$\mathrm{Cu}_{11} \mathrm{O}_{2}\left(\mathrm{VO}_{4}\right)_{6}$, fingerite (22)	$\mathrm{Cu}(6)$	1.929	1.907	2.147	179.6	93.2	133.5
		1.971	2.102			133.2	
$\mathrm{Cu}_{3}\left(\mathrm{AsO}_{4}\right)_{2}(23)$	$\mathrm{Cu}(1)$	1.931	1.993	2.157	173.8	102.1	132.1
		1.933	2.010			125.7	
$\mathrm{Cu}_{2}(\mathrm{OH})\left(\mathrm{AsO}_{4}\right)$, olivenite (24)	$\mathrm{Cu}(1)$	1.917	1.988	2.163	172.0	103.5	148.0
		1.984	2.048			108.4	
$\mathrm{Cu}_{2} \mathrm{O}\left(\mathrm{SeO}_{3}\right)-\mathrm{I}(9)$	$\mathrm{Cu}(1)$	1.916	2.081	2.081	180.0	115.7	115.7
		1.924	2.081			115.7	
$\mathrm{Cu}_{5} \mathrm{Se}_{2} \mathrm{O}_{8} \mathrm{Cl}_{2}$ (25)	$\mathrm{Cu}(1)$	1.964	1.927	$2.572^{\text {b }}$	171.0	96.2	150.1
		2.286^{a}	2.050 2.002	2.243	170.8	113.7	1363
$\mathrm{Cu}_{3} \mathrm{WO}_{6}$ (26)	Cu	1.953	2.060	2.243		135.8	136.3

${ }^{a}$ Interatomic distances in \AA, bond angles in ${ }^{\circ}$.
${ }^{b} \mathrm{Cu}-\mathrm{Cl}$ distance within a "trigonal bipyramidal" $\mathrm{Cu}^{[30+2 \mathrm{Cl]}}$ polyhedron.

Fig. 5. Coordination figures of $\mathrm{Cu}(\mathrm{II})$ atoms cited in literature as trigonal bipyramidal [5] coordinated. O, at the upper side, x, at the bottom side of the stereographic projection. The polyhedra mentioned in Table V are shown.

Tables IV and V, resp.) it can be deducted, that there is a continuous transition between the two ideal coordination polyhedra (a) $[4+1]$ coordination with "square planar" arrangement of the four nearest neighbors and (b) trigonal bipyramidal [5] coordination. These two different types of coordination figures of formal divalent copper atoms towards oxygen atoms in inorganic crystal structures have been described in the literature (cf. 1-7), but the transition has never been taken into consideration for $\mathrm{Cu}(\mathrm{II}) \mathrm{O}_{5}$ polyhedra.

It should be mentioned that many of the compounds listed in Tables IV and V contain an oxo-oxygen atom which is approximately tetrahedrally coordinated by four $\mathrm{Cu}(\mathrm{II})$ atoms (21). It should be taken into consideration that these OCu_{4} tetrahedra might cause a stronger distortion of the " CuO_{4} squares" or might favor a trigonal bipyramidal coordination geometry (steric aspects).

Acknowledgments

The author thanks Prof. Dr. J. Zemann for many discussions and expresses sincere thanks to Prof. Dr. F. Pertlik for his continuous encouragement and helpful suggestions. The synthesis was supported by the "Hochschuljubiläumsstiftung der Stadt Wien."

References

1. J. Zemann, Fortschr. Mineral. 39, 59 (1961).
2. J. Zemann, "Handbook of Geochemistry," Vol. II-3, p. 29-A, Springer-Verlag, Berlin, 1972.
3. R. D. Shannon and C. Calvo, Acta Crystallogr. Sect. B 29, 1339 (1973).
4. W. Eysel, K.-H. Breuer, and U. Lambert, Acta Crystallogr. Sect. A 40 (Suppl.), C-209 (1984).
5. B. J. Hathaway, Structure and Bonding 57, 55 (1984).
6. M. Trömel, Acta Crystallogr. Sect. B 40, 338 (1984).
7. A. F. Wells, "Structural Inorganic Chemistry," Oxford Univ, Press (Clarendon), London, 1984.
8. H. Effenberger, Z. Kristallogr. 175, 61 (1986).
9. H. Effenberger and F. Pertlik, Monatsh. Chem. 117, 887 (1986).
10. "International Tables for X-ray Crystallography," Vol. IV, The Kynoch Press, Birmingham, England, 1974.
11. W. H. Zachariasen, Acta Crystallogr. 23, 558 (1967).
12. K. SAhl, "Handbook of Geochemistry," Vol. II-5, p. 82-A, Springer-Verlag, Berlin, 1970.
13. R. Fischer and J. Zemann, "Handbook of Geochemistry," Vol. II-3, p. 34-A, Springer-Verlag, Berlin, 1974.
14. G. L. Shoemaker, E. Kostiner, and J. B. Anderson, Z. Kristallogr. 152, 317 (1980).
15. J. B. Anderson, G. L. Shoemaker, and E. Kostiner, J. Solid State Chem. 25, 49 (1978).
16. M. Brunel-Laügt, A. Durif, and J. C. Guitel, J. Solid State Chem. 25, 39 (1978).
17. M. Brunel-Laügt and J.-C. Guitel, Acta Crystallogr. Sect. B 33, 3465 (1977).
18. J. B. Anderson, E. Kostiner, and F. A. Ruszala, J. Solid State Chem. 39, 29 (1981).
19. P. H. Keller, H. Hess, and F. Zettler, N. Jb. Miner. Abh. 134, 147 (1979).
20. H. Effenberger, Z. Kristallogr., in press.
21. H. Effenberger, Monatsh. Chem. 116, 927 (1985).
22. L. W. Finger, Am. Mineral. 70, 197 (1985).
23. S. J. Poulsen and C. Calvo, Can. J. Chem. 46, 917 (1968).
24. K. Tomann, Acta Crystallogr. Sect. B 33, 2628 (1977).
25. J. Galy, J. J. Bonnet, and S. Andersson, Acta Chem. Scand. A 33, 383 (1979).
26. E. Gebert and L. Kihlborg, Acta Chem. Scand. 23, 221 (1969).
